%o

Institute for Methimatical
(ACCESSION NUMBI: FHRYY 3ies in the SOQL&}. Selences

taﬂmr«i University

l’(cons) Stanford 2 Callfornia
(} /(— /F Z (%Z % August L, 1959

(NASA CR OR TMX OR AD N MBER) (CATEGORY)

PACILITY FORM 802

Reference: NASA Research (rent HIR-05-020-244

Status Report (Januawy 1, 1969 - June 30, 1969)

cludes a yeview of the goals of the project and a progress yeport of these
goals. A move deisiled veport of the activitiss of the months April through
June is also included.

. Feview of Coals

The majoyr goal of the project is to develop a system Loy teaghling compuisy
programming (in particular, the programming language AID) by means of conpuierye
essisted instyuction. The course is Lo be campleiely sslif-contained and is
directed at students of about junior colleges abillty. Studente compunicats
with the computer throvgh standaxd teletypes, which are connescted to the
computer by telephone fives. The cz:mpn.ez% in its role as isagher, pressnts
instructions end problems to the student by typing on his teleiype, the student
vesponds by typlng on the same teletype, and the response 13 relayed to the
computer and analyzed. After apalyzing the students response, the computer
migt then reply, correcting the student if necessawy and presenting him with
additiocnal lostyvetion. AL the same time the computer wmust handlie simultane
ecusly lsxge numbers of other students, who may be taking the same course,
or wao may be enyolled in completely independent courses (computer-based
Russian, for example}. The computer must work in a time-sharing mode.

The copputer-assisted course may, of course, use supplementary materials

such 2s refexence meruals for the programming langusge being taught. Neverthsless,

/;D
2 W otE
B od £34

the course, including the supplementsry matexials, should be self-contalined in
the sense that it is indepsudent of lectures or other instruction apd dogs noi
vequire the presence of an experienced teacher of programming.

I¥. Bummary of the Year's Activities

In pilsnning the system for tesching progremming, we felt that the rela-
tively mature studants vho would be enyollied in the course would be capable of
meking decisions about the course of study and also would be motiveted by being
permitiad to mske such decisions. Thus, no arbitrary rewmedisl branching strue-
ture was ineorporated in the system; in its place, the curydenlum will advise
students Lo review previcus lgssons, to do cayia ets of practice or remedial
exereises, oy to skip lessons which may be either too easy or too 4ifficuli.
The student may choose Lo follow the advice given in the lessong, or to igunore
it, since he can contyol the seguence of problems by the use of a fev simple
feontrol commands.®

Abthough no major branching styucture is luposed on the student, theve is
a ratier complex system of "miero” branching withia each problem. After a
problem statewent is presented by the computer, the student may meke a nunbep
of different kinds of yesponses; for example, he may yequest edditlonal ine
struction; he may demand the corvest ensver; he may skip the problem and go
o to the next; he may reguest any other problem in the course; he may, of
course, type the eomct angwer; oF he may t;yyﬁ an incoryect response. For
each case the computer providess a different wesponse. Since the system can
meke fine disexininations betwesn student responses, each pmbz.em takes on
the aspect of a little “conversation.” This conversation may develop into
a dlalogue of some length, depending upon the numbeyr of messages supplied

by the wrlitey.

As plans for _tm. systen developed, i‘t"became elea:éthat the major goal
impiled two subsidiary gosls: the development of the enyriculum and the develop-
ment of a set of progrems which would interpret the lessons .anﬂ iwteract with
the students.

A: The currieuium. The course in ATD programming was planred ags & soodies
of lessons presenting ths fundementals of computey programming in the coniext
of an introduction to the programming language AID. AXEl(Algebmiﬁ Interpretive
Dislogue) is a high-level slgebrale programming langusge with extensive inteyrw
aﬁtive (or "gonversstional”) sbilities. This language 1s an adaptation for
the PDP-10 computer of JO55 32 a lﬁﬁgazagé which was developed by RAUD Corporaws
tion for use hy scientists, engineeyrs, ete., who needed & powerful, easy-to-
jearn tool capable of performing complexr algebralc {asks.

It was assumed that gtudents would have no previous expsyience with pwo-
gremuing oy computers, although a certain faeility with algebra (es suppiied
by a good course in high school algebra) wes necessayy. The move esoteris
algebraic concepts, such as hierarchy of coperations, zero sxponents, and
conditional definlitlon of funetlong, are veviewed in the course. Necessary

soneepts from logle ave also taught in the course. Certain features of AID,

1See PDP-10 AID Programuev’s Refervence Manual, Digital BEguipment Cowvporatilon,

Maynard, Massachusetts, 1968.

aSeﬁ Mérk, 8. I and Armerding, G. W., The JOSS Primer. The RAND Cowporation,

Santa Monica, California, August, 1967; Shaw, J. C., JUSS: Experlence with an
Experimental Computing Serxviee for Users at Remots Typewriter Consoles. The
RAND Coxporation, Santa Monica, Calitornia, May, 1965.

such as twanse@néﬁntaz functions ané:rééﬁxsiva definition of:fﬁneﬁioﬁgﬁ ave
of 1little use to students who have not had an introduction ﬁo caleulus or
modern algebra; such lessons ave optional and should be Lypassed by most
students. &n outline of the ALD course is given in Table 1.

In addition to the progreammad lesscons, & reference manual s avellsble
for siudent use, conteining an amﬁline and brief descyiption of the lessons,
additional programming problems to be done by the student, ete.

Of the 50 lessong whieh congtitule the lotyoductory c@u?5@3-33 have baen
written and 23 coded; the first two lessouns have bgen wvevised, and plans hawe
been mede to revise Igssgons 3 to 20. This revision is based on s small-scals
pllot study conducted during the spring of 1969. The prellminery version of
the student mamial has been writlen and was used by students; plens for &
ravision of the manpal have been made.

2. The ingtynctional system. In ordeyr to Implement the planmned curpie
culun, it was necessayy to develop a lsgson coding lenguage, an interpreter
program, and a supporting preprocessor system. The major setivity of the ysay
was the design of this set of programs and the prodvetion of a preliminapy
veysion of the system, veferred to es the "interim system” in previous weporis.

The interpreter (“teaching progrem™) interacts with students at the time
they aye working on a lesson. This Interpreter must be able to intevpret ths
instructions given it by the currlculum writer and to use that information to
detexmine which problem to gilve the student, how Lo analyze his vesponse, and
how to react properly to that response.

The instructions given to the intevpreter by the writer must, of course,

be in a simplified “code™ which can be understood by the interpreter, hence

a necessary part of the instructional system 1s a rigorously defined, un-
ambiguous, coding lenguage. The coding language, which may be used by
relatively inexperlehced personnel, had to be easy to lesyn and easy to use
and preferably related closely to the English language. In other words,
the coding languege hed to be a genuine highey-level progremming language.

The interpreter had to be written to interpret this coding languege
directly. However, since response time is such a critical concexn in the
design of any interactive system, it was desirable to have the Eggﬁé_}ffffff
put through at least one intermediate transletion to tremsform the code into
a language more veadily understood (cr at least, more rapidly undexstood) by
the interpreter. Thus, a system of intermediate transglation, or "“iesson
preprocessing,” wvas desirable. The lesson preprocessing may then be done
before a student commences a lesson, perhaps the evening before, or perhaps
months before, vith a sigpificant beneficisal effect on the resgponse time
of the interpreter.

Imring the year the specifications for the instructional system were
written, a preliminary version of the coding language was developed, and the
programs for lesson preprocessing and for interpreting were written, debugged
an@ used by students in the pilet study.

Baged on experiences of coders and studenis; plans were made for a re-
vision and extension of all components of the instructional system. The ney
instructional system is now being prepayed; detailsd deseript&cn is glven in
Section IV of this report.

As the instructional system developed it became evident to all concerned

that, although the First application of the system was to ke the course in

ALD programming, the system was equally well suited to teach any programming
language, or indeed to tsach almost any other subject amensble to computer-
assisted instruction. The system is not well suited for drill-snd-practice
oy for experimental vse where a moyxe vigid byrsuching siructure is desired.
Nor is it eguipped with the peripheral appavatus (audio, visual displays)
necessary for subjeets such as foxeign langvages or art. However, any
subjeet which is primerily conceptual and which mey be teught verbally, is
an ideal candidate for computer-assisted instruetion using this teaching
system. An effort has been made throughout the design and implementation
of the instructional system to malntain this generality.

TII. The Pilot Study

During the Spring Quarter, 1969, there was & very small pilot study
whose purpose was to supply informstion for meaningful revisions of the
currigelun and the instructlonsl system. Since this was the first trisl of
the system, the most useful infovmation would be dexived from students' re-
actions to the program. There was no plan to collect detailed data or to
do any kind of statistical anzlysis of data. Ten students were enrolled
in the course on a flexwible time scheduling hasis; some students were
scheduled three sessions a week, otheﬁstwo, and others came only once a
waek, depending upon the wishes of the individual students. The students
were allowed to use the course in vhatever way they felt best; but they were
restricted to taking not more than two lessons per session. Also, lmmediately
after each sesgion, they were to be interviewed for about 5 ﬁo‘io minutes,

The studente completed anywhere from three to twenty lessons each, with

about helf of them getting as far as ILesson 20. In gensral, the students

who did fewer lessons dld so because they spent less time on the lessong
rather than because of any great difficulties with the materisl. in Fact,
the student who had the most difficulty with the course, end made the slow-
Aest progress in relation to the time spent, finished Issson 13 by the end

of the guarter and expressed regret that he hadn't been able to spend enough
time to have completed the 20 available lessons.

Students were timed on several lesscons In oxder to get a rough ldea of
the time whieh would be necessary'for‘future students to complete the convse.
The average time per problem for different students ranged from sbout one
minute per problem to three minutes per problem; the ssslgnments for each
lesson required about as much time as the lesson ftself.

Bxtensive notes were taken during interviews with the students and were
summarized in an anecdotal weekly weport. Also, the wxesponses to Individual
problems were tabulated and the percentsges of correct and incorrsol responses
vere calculated. The most freguent incorrect response to each problem was
also tabulated.

The students were guite enthusiestic sbout the course and would have
worked for seweral hours et a time had they not bheen yestyicted to toking
no more than two lessons per session. Singe most of the students’ comments
were about speelific problens, theve was no indication that a major revision
of the curriculum is needed. The followlng are a few general observations
based on students® comments and behavior.

Use of student controls. The student control commands, which were ex-

plained in detall in Iesson 1, were received with enthusisem. (A& control

command is given by holding down the "CTRLY key while striking & letter key.)

The commands used were

¢irl-H (used to request a hint)

Ctrl-T {(used to request the answer)

Ctrl-S (ekip to next problem)

Cerl-G (used to get another problem or lesson. After the student
tyoes Ctrl-G he is asked 1o specify the lesson and problem
he desires.)

Both Ctrl-H and Ctzl-T were used frequently, although there was notice.
able tendency for students to use one opr the cther but not both. {ipl-H
was rarely used; In faect, seversl students were asked, at the end of Iessom 3,
what eontyrol commands weye available and were not able to reeall Ctrl-S.

Cirl-G was used much less than anticlipsted. At the end of the pilot study,
the students were querded about this; several sitvdents replied thet they
thought they would not be contributing fully to the experiment (the pilot situdy)
if they skipped any of the lessons: a few students felt that they would not know
what they had skipped and that it might be important to them in lster lessons
(this comment was mede even in vefevence to reviews and self-tests in which
there was an explicit stotement that no new material would be presevted and
that it was perfectly scceptable to skip the entire lesson); only one student
consistently chose to review previous lessons snd he commented that he Telt

he simply vepeated the sawe mistskes without schieving any noticeable gain
in understanding.

lengvage confusion. Almost all students evidenced some confusion between

the language they were learning (the &ID programming language) and the langusge
(English) used in the exposition. Part of this confusion undoubtedly avose

because the AID language is a subset of English (AID commands aye syntactically

coxrect BEnglish sentences that contain a verb, end with a pericd, ete.):
although this is certainly not a complete explenation and it is obvlous
that the adventages of teaching an English-based programping langusge faw
owtweigh the disadventages even if it could ke shown to be a significant
factoyr in the langvage confusion.

Furthermore, a few students were also puzzled aboui which program they
were using--the teaching program or the ALD interpreter (which they used
for doing assignments); one student tried to ask the ALD interpreter for
hints about an assigned programming problem. It is fell that some confusion
between langusges and between programs is almost inherent in the situation
and no satisfactory way of dispelling the confusion has been Tound.

Congiructed Responsas to Multiple-Choice Problems

The multiplie-cholice problems used in the course conslst of a problem
statement oy question and a list of possible answers, each of which is labeled
with a letter. ¥For example,

WHICH OF THESE ARE CORRECT AID COMMANDS?

A. TYPE 2 X3
B PRINT 2%3.

¢. TYPE 2¢3.

N. NONE OF THE ABOVE.

Students are expected to respond by ityping a letter (or list 9f letters)
corresponding to the correct answer (or answers).

Theye is a notigeable tendency for students to respond to certain multiplee
choice problems by typling the answeyr itself yather than typing the corresponding

letter. In the AID course, a response other than a single letter (or 1list of

10

letteys) is tveated as an eyror, and the message

PLEASE TVPE [ETIERS ONLY
is given. This evror message hes been found to be remarkably ineffective; the
provabllity thet a student will rvepeat the ssme kind of error aliexr wecslving
the shove ervoy message seems to be greater than one half, possible as much
a8 three quarters.

The tendensy to meke the kind of ervor described sbove seems to be in-
fluenced by the following factors:

1. Ansver length. If the number of chayacters in the answer choice is
small (ssy, two to silx charvacters), thers is a strong tendeney to type the
answey itseld.

2. Context. If the problem is preceded by several preobiems requiving
construated vesponses, the fendency to consitrucet a response is somevhatl incveased.
If the preeeding constructed responses are closely related to the choices in the
multiple-choice problem, theye is an even gtrongex tendency to construct a wee
sponge; for ewample, if the six preceding problems requixe Tdigit numbers as
a vesponse, and the cholces in ﬁh@~multiplemchoiee problem ave 3-8igit mwwbers,
thers is a high probablliity of making an error.

3. Problem-solving strategy required. There seem to be two distinet kinds
of problen-solving strategles used in producing the answver to a muliiple-choice
problem. One is a “mentsl construction” of the eorrvect answer, followed by a
search of the cholces for that answer, and the other kind isz a “Peasibility-
elimination” approach in which the student inspects the list of possible
ansyers and chooses that vhich is most feasible, or eliminates {hose choices

wvhich are least feasible. (Cenerally, students working on a specific problem

11

will not switeh Ffrom one strategy to apother unless there is s compeliling
resson; for instance, a student will abandon a “fessibility-elimingtion®
approach if several cholces are equally fessible.) The strastegy o student
uses is Iinfluenced by the problem statement although there is scme tendency
for individusl students to prefexr one strategy over another. If the "meatal
construction® stretegy is used, the student is more likely to produce an
ovext constyuetion of the answer, thereby producing an “error.”

L. Wording used in problem statement. The vwording used in lustyuctions
to the student seems to have some effect on the tendency to glve & construsted
answer to a multliple-choice problem. In partlcular, use of the woxd Fyhat®
in the problem statement produces more errors than the word "which.” TFox
example, compsre "Whet command casuses ALD to give N a value of 127" with
"Which coumand cauges AID to give N a value of 1297

One additional comment: Although the above remarks may dmply that the ervor
of constyucting a response in answeyr to a multip%gi3§9§g@ guestion is a use-
mention error, this may not be the case. There are a number of problems in the
gourse which requize a "partial constmuction” and there is an observabis tene
deney in students to give a more compiete answer then is reguired; for exémpla,
gtudents tend to answer Do Part 12% rather than "Do” in vegponse to this

problem;
COMPLETE THIS COMMAND TO

EXECUTE PROGRAM 12,
essve PART 12,
The errvor of constructing a movs eemplete mesponse than reguired is clearly
not a use-mention exyoy, and 1t seems to be closely related to the erxror of con-

structing a response to a multiple-choics problenm.

12

Answer length, cootext, requived strategy, and wording used in problem
gtetement arve not the only Factors which conirdbute to the kind of use.mention
exror under consideretion here; there ars also individval fsctors, such as
age and previous experience. Howewer, the above four Tactors ave the only

curvionlmn-oriented factors vwhich seem to have an effect.

IVe Other Activities cf itbe Past Quarisy

In addition to conducting a pllot study, the staff coniinuved writing
lessons, coling and debugging.

A major revigion of the coding langrage wes made ond work on the time.
shoyved version of the instructional sysiem wag started. The revised inatiune
tional gystem will be discussed in detall In the next progress report.

Vo Activities Planned for the Next Hepoiting Perlod

During the next three months detalled plens for a rpevision of the cure
wloeulum will be made, some of the lessons will be rewritten and lesson coding
{using the revised coding language) will ccmmence.

A ¢oders’ menuwal for the new eoding lavgusge will ve wrltien.

The major effoét in the next months will be the preparatlion of the pro-
grems fox the revised instruetionsl system. The two major progrems, ths
lesson driver and the lesson preprocessor, will be written fivst; supporting
progrems, such as the student envolilment progvem, the data collectop, ete.,

wlill not be wrltten until the major programs are completed.

Report submitied by

Richard €. Atkinson
Professoy of Psychology

13

TARCE 1
QUILINE

Compwter-lesisted Instruetion in Programming: ALD

fesson 1. How to answer, How to erasse. Contvol compands.

Iesson 2. Signing on and off AID. The TYPE command. Arithmetic
opexatorss < - ¥ / o Declmal numbers.

iesson 3. Using 81D for aritbmetic. Use of parentheses. Oxder of
arithwetic operatioans.

Iesson 4. The operator 1t for exponentiation. Ovder of operations.
Seientiflc notation.

lesson 5. Vardiables. The SET command. Re-defining varisblss. The
DEIETE occompend used to delete varisblss.

fesson 6. © Self-teat.
Imsson Te Heview.

Iesgon 8. The LET commend (using funetlon notation). Digtinction
betueen LET snd SBET. Distinction betueen use of a defined
funetion and displsy of the formula for a functlion. Re-
defining and deleting functlons.

lesson Q. Some standard ATD functions: IP(x), FP(x), SGH(x), SORT(x).

Isspon 10 Indivect steps.
DO STER sues .
B0 BUBP oo FOR s00a
Re~defining steps and deleting steps.
TYPE STEP ovoe

Iggson 11l. Parts.
DO PART coos
BO Péﬁ’l’ ssOR FOR LW X
Deleting parts.
TYPE PART.

Iesson 12. The DEMAND command.
BOPA:E{W 01\03 %Y e mSc
Termination by vefusal to answeyr a DEMAND command.

Issson
Imssson

Tesson

Iesson

Izsson
Isason
issson
Izsson
fesson
Ieason
fesson
fesson
Iesson
fesson
Iesson
Iesson
Issson
Iizsson
Iesson
iesson
Issson

Izsson

13.
1%,

15.

16.

i7-
i8.
19.
200
2%,

22.

29.
30.
3%
32,
33.
3h.

Self-test.

Review.

Helations between numberxs.
Relational syubois: < > <= 2=
Number line.

The IF clause.

Branching. The TO command.

TO STEP wee

TO PART oo

Traces.

The indivect use of I

How to wylte and debug a progyam.
Self-tant.

Review.

The FORM statement.

LoopS.

Loopa with varlable bounds.
Loops compared with FOR clouses.
Ioops with a UEMATD command.
Self-test.

Review.

Absolute value.

Tyigonometric functions: SIN(x), ¢os(x).

Ep(x), 1oe(x).
Lists.
Using loops with lists of mwbers.

Selif-test.

1

Iesson 35.

Tesson 36,

iesson 37.

iesson 38.

~{esson 39.
lesson 40,
Iesson hl.
Iesson k2,

Tesson 43,

Iesson hl,
Tesson 45,
Tesson 46,
iesson 47.
Issson U8,

lesson 49,

Reviev.

HMore on loops. Formulas

exlt condition.

Lecrementing counters.

Iterative funetions: SUM, PROD, MA{, MIW,

Avvays.
IET S BE SPARSE.

Conditional definition of funcitions.
Recurslon.

Seli-test.

Beviev.

AND, OR and HOT.
Pruth tebles.

T¥{x)}. The function FIRST.

IBT used to define propositions.
More standard ALD functlons.
Hore sbout lists and srrays.

Self-test.

Beview,

for

15

